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Self-organization in populations of competing agents
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A population of heterogenous agents competing through a minority rule is investigated. Agents which
frequently lose are selected for evolution by changing their strategies. The stationary composition of the
population resulting from this self-organization process is computed analytically. Results are compared with
numerical simulations of two different minority games and other analytical treatments available in the
literature.

PACS number~s!: 05.65.1b, 87.23.Cc, 87.23.Kg
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The mechanisms under which a population of compet
agents self-organizes is a problem that has gained a lo
interest among the physics community in the last few ye
@1–7#. As in traditional statistical mechanics, the main go
is to determine the average behavior of the population ba
on elementary rules which characterize the competit
among agents. Given the actual state of art most of the w
have been devoted to the characterization, by means of
merical experiments or analytical treatments, of the differ
models proposed in the literature@1–3,7#, while a general
description is still missing.

This work is an attempt to extract some general featu
present in the subclass of models where the performanc
the agents is characterized by a certain minority rule@1,2,7#.
Agents are assumed to be heterogeneous and the main g
to obtain the final composition of the population if a certa
evolution mechanism is introduced. The agents will be s
posed not to be subscribed to any regular lattice which ru
out the existence of spatial correlations allowing a mean fi
~MF! treatment.

The work is organized as follows. First the general fe
tures of the class of models under consideration are in
duced. Based on these rules the MF rate equations descr
the evolution of the population are derived and the station
solutions are computed. These results are compared with
merical simulations of two particular minority ‘‘games.
Moreover, a comparison with the analytical results alrea
available for the model by Johnsonet al. @3–6# is also
drawn. In all cases a very good agreement is obtained.

Consider a population ofN ~odd! heterogeneous Boolea
agents characterized by a certain propertyx. The Boolean
nature of the agents restricts their action to only two po
bilities. An example is the Arthur-bar problem@1# in which
each agent attends or not a bar based on the past atten
to the bar. Another example is the minority game introduc
by Challet and Zhang@2#, in which the agents can either bu
or sell. In both models a good choice ofx is the probability
that an agent takes different decisions in two different ste
A different choice is taken in the model introduced
Johnsonet al. @3#. In this casex is the probability that an
agent accepts the decision suggested by its strategy or
the opposite. In general one may think ofx as any property,
or set of properties, which distinguish the different strateg
one agent can choose.
PRE 621063-651X/2000/62~4!/4497~4!/$15.00
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On each step each agent takes one of the two decisi
and those being in the minority win. The long time perfo
mance of the agents will be characterized by a cumula
index z in such a way that each time an agent wins it
rewarded with a positive point (z→z11); otherwise, it is
punished, and receives a negative point (z→z21). Evolu-
tion in the population is introduced assuming that each ti
the performancez of an agent goes below a threshold2zc
(zc.0) it is selected for evolution and changes its strategy
new value ofx (x→x8) is selected among a certain distrib
tion P0(x8) and its performance is reset to zero (z→0).

A similar evolutionary mechanism has been already c
sidered in@3#. One also may think in other implementation
such as the extremal rules considered in@2,7#, or a probabi-
listic rule in which agents can change strategy even belowzc
according to certain probability, which in general may d
pend onz. In any case it is expected that all of them give t
same qualitative behavior in the largezc limit.

Having defined the model let us determine which is t
stationary composition of the population of agentsP(x), the
fraction of agents of typex. For doing so we first derive the
rate equations which describe the dynamical evolution
P(x), which in general can be written as

]

]t
P~x!5(

x8
@W~x8,x!P~x8!2W~x,x8!P~x!#, ~1!

whereW(x8,x) is the transition rate fromx8 to x.
The only rule which allows a change inx is the evolution

rule, in which the agent chooses a new value ofx8, selected
with probability P0(x8). Thus, if l(x) is the fraction ofx
agents which are changing their strategy per unit time, t
the transition rates are given byW(x,x8)5l(x)P0(x8). Af-
ter substitution of this expression into Eq.~1! it results that

]

]t
P~x!5P0~x!(

x8
l~x8!P~x8!2l~x!P~x!. ~2!

To determinel(x) we need to consider the temporal ev
lution of the cumulative performance indexz(x). Let Pm(x)
be the probability per unit time that anx agent is in the
minority in one step. Thus, with probabilityPm(x) @1
2Pm(x)# the performance increases~decreases! by one unit.
More generally one can definePm(x) as the probability that
R4497 ©2000 The American Physical Society
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an agent wins a point, regardless how it did. On the ot
hand, if an agent changes strategy, which happens with p
ability l(x), then its performance increases byzc . These
elementary processes lead to the rate equation

]

]t
z~x!52Pm~x!211zcl~x!. ~3!

ProvidedPm(x),1/2 for all x the system described b
Eqs.~2! and ~3! will always reach a stationary state. In th
state time derivatives vanish, obtaining

l~x!5
1

zc
@122Pm~x!#, ~4!

P~x!5
A

122Pm~x!
P0~x!, ~5!

whereA is a normalization constant.
Agents withPm(x) close to 1/2 are more stable to chan

in strategy, as can be seen from Eq.~4! and, therefore, they
will have a larger participation ratio in the stationary pop
lation, as follows from Eq.~5!. The distribution from which
the value ofx is extracted is thus modulated by the probab
ity of being in the minority, yielding the stationary popula
tion in Eq. ~5!.

On the other hand, from Eq.~4! it can be seen that in th
limit zc→` the fraction of agents changing strategy becom
infinitesimal and, therefore, in this limit one can expect
obtain the same results as if one used an extremal evolu
rule. Another aspect to be emphasized is the fact that
parameterzc , which in principle is the only evidence of th
particular evolution rule chosen here, does not appear in
expression for the stationary distribution of agents in Eq.~5!
and, therefore, this result is expected to hold independen
the particular evolution rule chosen.

So far the results obtained here are very general and
pected to apply to a wide class of models of Boolean age
with the minority rule. To go further we have to determin
Pm(x), which may, however, depend on the particular mo
under consideration. Below two different cases are analy
One is a very simple model of noninteracting agents~NIA !,
which make their decision at random. The other is the v
recent implementation of a population of Boolean age
built up onto a Kauffman’s network~AKN ! introduced by
Paczuskiet al. @7#.

In the AKN model introduced in@7# agents makes thei
decisions based on the previous decision of some o
agents. A Boolean variables i ( i 51,2, . . . ,N; s i50,1) is
assigned to each agent which is representative of the
possible decisions one agent may take. The decision take
each agent is based on the decision taken by otherK agents
chosen at random (i 1 , . . . ,i K) in the previous step, accord
ing to certain Boolean functionf i selected at random amon
the set of all the 22

K
possible Boolean functions withK in-

puts, i.e.,

s i~ t11!5 f i@s i 1
~ t !, . . . ,s i K

~ t !#. ~6!
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Without lost of generality and for a reason which becom
clear later, Boolean functions which give the same out
independent of the inputs are ruled out.

In the original variant of this model@7# an extremal evo-
lution rule is used, such that after a certain time the wo
agent is selected for evolution. This rule is relaxed here w
the barrier evolution rule considered previously, whi
yields the extremal dynamics aszc→`. Moreover, one can
see that a property that makes differences among the ag
can be the number of times 1 appears on theM52K outputs
of its Boolean function, denoted byn. If n is close toM /2 the
agent will give as output 0 or 1, depending on the config
ration of itsK neighbors, with approximately the same pro
ability. Otherwise, if n is close to 1 orM the agent will
practically give the same output independent of the confi
ration of its neighbors.

The NIA model is a simplification of the above model
which interactions among agents are ruled out. In this c
on each step ann agent gives 1 as output with a probabili
n/M and 0 otherwise. For this case the agent’s decision d
not depend on decisions of any other agents and, there
there is no other correlation than the one introduced by
minority rule, which depends on the output of all agents.

Numerical simulations were performed for a populati
of N599 agents andK52,3,4,5. In all cases the system
updated until it reaches the stationary state and then the
erage is taken over the temporal evolution of the populati
The resulting data is averaged over different realizations
the initial Boolean functions and over the choice of neig
bors in the interacting case.

Since the new Boolean functions are selected at rand
one has

P0~n!5B~n;0.5,M !Y (
r 51

M21

B~r ;0.5,M !, ~7!

whereB(n;p,m) is the binomial distribution, the probability
to obtain 1n times and 0m2n times given on each single
event 1 happens with probabilityp. The valuesn50 andM
are ruled out because they give fixed strategies, and co
quently the binomial distribution is renormalized.

To compute the stationary compositionP(n) one has to
compute the probabilityPm(n) that an agent of typen is in
the minority, and then plug in the result in Eq.~5!. For N
large the game is expected to be symmetric in the sense
with probability 1/2 the minority is the group of agen
which takes the 1~or 0! as output. In such a case a fixe
agent will, in a long time window, have a probability 1/2 o
being in the minority while agents changing their output ve
often are expected to have a lower probability to be in
minority.

The main hypothesis taken here is that 122Pm(n)
5 f @r(n)#, wheref @r(n)# is a smooth function of the prob
ability per unit timer(n) that an agent changes its outpu
Since fixed players (r50) has a probability 1/2 to be in th
minority, then f (0)50. In the following f (r) is expanded
aroundr50, keeping only the linear term, resulting in

122Pm~n!}r~n!1O@r~n!2#. ~8!
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Now, for NIA r(n) is just the probability to find two
different outputs on the agent’s strategy, which is given
Pc(n)52(n/M )(12n/M ). For AKN one should also take
into account that agents can change their output only i
least one of its inputs has changed output in the previ
step. Within an MF approximation the last event happe
with probability K r̄. Thus, in general,

r~n!5BPc~n!, ~9!

whereB51 andB5K r̄ for NIA and AKN, respectively.
By construction in both modelsPc(n).0 because the

casesn50 andM have been ruled out. Hence, 122Pm(n)
}BPc(n) can only be zero ifB50, and if does it is zero for
all n. If the second possibility happens then all agents w
have the same probability to be in the minority and, the
fore, their distribution in the stationary state will be the d
tribution from where the Boolean functions are extract
i.e., P(n)5P0(n). Hence, Eqs.~5!, ~8!, and ~9! yield the
following alternative:

P~n!5H P̄c

Pc~n!
P0~n! for B.0

P0~n! for B50,

~10!

where P̄c5(nPc(n)P(n), which is the final output of the
present calculation.

For NIA as mentioned aboveB51 and, therefore, the
alternativeB.0 takes place. The comparison of this pred
tion with numerical data is shown in Fig. 1. The agreemen
quite well for all values ofK, proving that the ansatz in Eq
~9! applies for this model.

For AKN B5K r̄ and one should analyze whetherr̄ is
zero or not. As is well known the Kauffman’s network di
plays qualitatively different behavior depending on the va
of K @8#. For K<2 and independent of the initial condition

FIG. 1. Stationary composition of the population of agents. T
points were obtained from numerical simulations of a population
N599 agents with a thresholdzc5100 andK52 ~squares!, K53
~circles!, and K54 ~triangles!. In all cases the open and close
symbols correspond to the NIA and AKN models, respectively. T
solid lines are obtained using Eq.~10! with B50 ~dashed lines! and
B.0 ~solid lines! for the corresponding values ofK.
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the network evolves to a frozen configuration withr̄50. On
the contrary forK.2 the network evolves to periodic orbit
with periods growing exponentially withN ~‘‘chaotic
phase’’!, in which r̄.0.

Thus, the population of agents building up onto the Kau
man’s network is a very good scenario to test the validity
Eq. ~10! because both alternatives can be observed.
comparison is shown in Fig. 1. ForK52 it can be seen tha
the numerical data is in better agreement byP(n)5P0(n),
as predicted above. On the contrary, forK.2 the data is in
better agreement with the caseB.0 in Eq. ~10!.

For K.2 both the NIA and AKN models yield the sam
distribution P(n) and, therefore, the correlations introduc
by the network are in those cases irrelevant. Moreover, w
increasingK the composition of the population gradually a
proachesP0(n), which explains the lost of self-organizatio
observed in@7#.

Finally the model of Johnsonet al. @3# is considered. In
this case the decisions taken by the agents depend on
previous history of the winning group. For each agent it
available in the information of which has been the winni
groupsw(t) @sw(t)50,1# in the lastK steps. Moreover, to
each of them a strategyf i is assigned, which is extracted a
random among all the possible Boolean functions ofK in-
puts. Then, for each possible past history each agent
give a well defined output based on its own strategy, i.e.

s i~ t11!5 f i@sW~ t !, . . . ,sW~ t2K11!#. ~11!

Notice that in this case the output of each agent depend
global information and not on the outputs of any other age
as in the AKN model@see Eq.~6!#.

So far this model is just a variant of the minority game
Challet and Zhang@2# for the case in which each agent h
only one strategy at his disposal. In the variation by John
et al. @3# a probabilitypi is assigned to each agent based
whether or not he accepts the output of its strategy. W
probability pi (12pi) he uses the outcome~the opposite
outcome! of its strategy. Moreover, they introduced the c
mulative indexzi to measure the performance of each ag
in a similar way as described above. The only difference
that for this model whenzi goes below the threshold,2zc
the agent does not change its Boolean functionf i but rather
its probability pi , choosing a new one at random in the i
terval @pi2R/2,pi1R/2# with reflective boundary condi-
tions.

Some analytical results are already available for t
model@4,6#. Using a diffusionlike approach@4# or a detailed
probabilistic calculation@6# it has been shown that in th
stationary population it has the following composition:

P~p!5
A

122Pm~p!
, ~12!

whereA is a normalization constant andPm(p) is the prob-
ability that an agent of typep is in the minority@9#.

Equation~12! is actually quite similar to Eq.~5!, with the
choicex5p. Since for this model the new values ofp are
extracted from a uniform distribution it is expected th
P0(p) does not depend onp. Hence, Eq.~12! can be seen as

e
f

e



r

in

it
t

an
n

e.

ing
such
si-
s a

nd
ular
e
a
to

lf-

s-
g

RAPID COMMUNICATIONS

R4500 PRE 62ALEXEI VÁ ZQUEZ
a limiting case of Eq.~5! when applied to the particula
evolution rule of the model by Johnsonet al. @3#, where
P0(x)5const.

In order to go beyond this result one has to determ
Pm(p). This has already been done in@6# resulting that for
large N, 122Pm(p)'C(N)2p(12p), where C(N)
;N21/2. This results does not seem to have any relation w
the ansatz in Eq.~10!. However, one should notice tha
2p(12p) is just the probabilityPc(p) that an agent of type
p gives two different outputs, given the output of its Boole
function has remained fixed. Therefore, from this result a
Eq. ~12! it follows that

P~p!5
P̄c

Pc~p!
. ~13!

This equation is just theB.0 alternative of Eq.~10!. Hence,
the functional dependence ofPm(x) andP(x) on Pc(x) ap-
pears to be universal for the class of models studied her
e

e

h

d

In summary, a heterogeneous population of compet
agents has been studied. Based on general arguments,
as the minority rule and evolution, the stationary compo
tion of the population of agents has been computed a
function of the probabilityPm(x) of being in the minority.
Further analysis reveals that the relation 122Pm(x)
}Pc(x) is universal for this class of models, wherePc(x) is
the probability that an agent of typex gives different outputs.

For the AKN it is concluded that except forK52 the
correlations introduced by the network are irrelevant a
agents can be considered to be independent. In the partic
caseK52, which corresponds to the critical network, th
population buildup onto the Kauffman’s network reaches
stationary state in which all agents have a probability 1/2
be or not in the minority. Moreover, the loss of se
organization with increasingK was shown to take place
gradually.
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