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Self-organization in populations of competing agents
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A population of heterogenous agents competing through a minority rule is investigated. Agents which
frequently lose are selected for evolution by changing their strategies. The stationary composition of the
population resulting from this self-organization process is computed analytically. Results are compared with
numerical simulations of two different minority games and other analytical treatments available in the
literature.
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The mechanisms under which a population of competing On each step each agent takes one of the two decisions,
agents self-organizes is a problem that has gained a lot @find those being in the minority win. The long time perfor-
interest among the physics community in the last few yeargnance of the agents will be characterized by a cumulative
[1-7]. As in traditional statistical mechanics, the main goalindex z in such a way that each time an agent wins it is
is to determine the average behavior of the population baseg@warded with a positive pointz(~z+1); otherwise, it is
on elementary rules which characterize the competitioPunished, and receives a negative pont+z—1). Evolu-
among agents. Given the actual state of art most of the workéon in the population is introduced assuming that each time
have been devoted to the characterization, by means of nthe performance of an agent goes below a threshotdz,
merical experiments or analytical treatments, of the differenf{z.>0) it is selected for evolution and changes its strategy: a
models proposed in the literatufé—3,7], while a general new value ofx (x—x") is selected among a certain distribu-
description is still missing. tion Po(x’) and its performance is reset to zem0).

This work is an attempt to extract some general features A similar evolutionary mechanism has been already con-
present in the subclass of models where the performance &fdered in[3]. One also may think in other implementations
the agents is characterized by a certain minority fal@,7.  such as the extremal rules considered2iv], or a probabi-
Agents are assumed to be heterogeneous and the main goaligic rule in which agents can change strategy even below
to obtain the final composition of the population if a certainaccording to certain probability, which in general may de-
evolution mechanism is introduced. The agents will be suppend onz In any case it is expected that all of them give the
posed not to be subscribed to any regular lattice which rulesame qualitative behavior in the largg limit.
out the existence of spatial correlations allowing a mean field Having defined the model let us determine which is the
(MF) treatment. stationary composition of the population of ageR{x), the

The work is organized as follows. First the general fea-fraction of agents of type. For doing so we first derive the
tures of the class of models under consideration are introrate equations which describe the dynamical evolution of
duced. Based on these rules the MF rate equations describif{x), which in general can be written as
the evolution of the population are derived and the stationary 5
solu_tlons are co_mputed. These results are co_mp‘allred Wltflnu- Zpx)=3 WX, )PX ) —WxX )P, (1)
merical simulations of two particular minority “games. ot o
Moreover, a comparison with the analytical results already
available for the model by Johnscet al. [3—6] is also  whereW(x’,x) is the transition rate from’ to x.
drawn. In all cases a very good agreement is obtained. The only rule which allows a change inis the evolution

Consider a population dfl (odd) heterogeneous Boolean rule, in which the agent chooses a new valueofselected
agents characterized by a certain propettyThe Boolean With probability Po(x"). Thus, if A(X) is the fraction ofx
nature of the agents restricts their action to only two possiagents which are changing their strategy per unit time, then
bilities. An example is the Arthur-bar problef] in which  the transition rates are given BY(x,x") =X\(x)Pg(x"). Af-
each agent attends or not a bar based on the past attendah@esubstitution of this expression into Eq) it results that
to the bar. Another example is the minority game introduced 5
by Challet and Zhanf2], in which the agents can either buy o _ / "N
or sell. In both models a good choice is the probability at P(X)_PO(X)g AXDPO) =A)PO. @
that an agent takes different decisions in two different steps.

A different choice is taken in the model introduced by To determine\(x) we need to consider the temporal evo-
Johnsonet al. [3]. In this casex is the probability that an lution of the cumulative performance indegx). Let P,(x)
agent accepts the decision suggested by its strategy or doks the probability per unit time that ax agent is in the
the opposite. In general one may think>oéis any property, minority in one step. Thus, with probabilitf?(x) [1

or set of properties, which distinguish the different strategies- P,,(x)] the performance increasétecreaseshy one unit.
one agent can choose. More generally one can defirfe,(x) as the probability that
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an agent wins a point, regardless how it did. On the othelVithout lost of generality and for a reason which becomes
hand, if an agent changes strategy, which happens with proleiear later, Boolean functions which give the same output
ability \(x), then its performance increases by. These independent of the inputs are ruled out.
elementary processes lead to the rate equation In the original variant of this modgl7] an extremal evo-
lution rule is used, such that after a certain time the worst
P agent is selected for evolution. This rule is relaxed here with
Ez(x)zZPm(x)— 1+2zA(X). (3) the barrier evolution rule considered previously, which
yields the extremal dynamics @s—. Moreover, one can
see that a property that makes differences among the agents
Provided P,(x) <1/2 for all x the system described by can be the number of times 1 appears onNhe 2% outputs
Egs.(2) and(3) will always reach a stationary state. In this of its Boolean function, denoted by If nis close toM/2 the
state time derivatives vanish, obtaining agent will give as output 0 or 1, depending on the configu-
ration of itskK neighbors, with approximately the same prob-
1 ability. Otherwise, ifn is close to 1 orM the agent will
A(X)= Z—[l— 2Py(X)], (4)  practically give the same output independent of the configu-
¢ ration of its neighbors.
The NIA model is a simplification of the above model in
which interactions among agents are ruled out. In this case

P(x)= 1-2P,(x) Po(x), ®) on each step an agent gives 1 as output with a probability
n/M and 0 otherwise. For this case the agent’s decision does
whereA is a normalization constant. not depend on decisions of any other agents and, therefore,

Agents withP . (x) close to 1/2 are more stable to changethgre _is no other. correlation than the one introduced by the
in strategy, as can be seen from E4). and, therefore, they minority r!*'e’ Wh'Ch dgpends on the output of all agents:
will have a larger participation ratio in the stationary popu-  Numerical simulations were performed for a population
lation, as follows from Eq(5). The distribution from which  ©f N=99 agents anK=2,3,4,5. In all cases the system is
the value ofx is extracted is thus modulated by the probabil-UPdated until it reaches the stationary state and then the av-
ity of being in the minority, yielding the stationary popula- €rag€ is tqken over.the temporal evolu'tlon of the popglaﬂon.
tion in Eq. (5). The_re_sultlng data is av_eraged over different r_eallzatlor)s of
On the other hand, from E@4) it can be seen that in the the |q|t|al B_oolean _funct|0ns and over the choice of neigh-
limit z.— = the fraction of agents changing strategy becomed©rS in the interacting case.
infinitesimal and, therefore, in this limit one can expect to SInce the new Boolean functions are selected at random
obtain the same results as if one used an extremal evolutict'® has
rule. Another aspect to be emphasized is the fact that the
parameter., which in principle is the only evidence of the M-1
particular evolution rule chosen here, does not appear in the Po(n)=B(n;0.5M) > B(r;0.5M), @)
expression for the stationary distribution of agents in (g. r=1
and, therefore, this result is expected to hold independent of

the particular evolution rule chosen. whereB(n;p,m) is the binomial distribution, the probability

So far the results obtained here are very general and eXg optain 1n times and Om—n times given on each single
pe_:cted to a_lpply to a wide class of models of Boolean agentgyent 1 happens with probability The valuesn=0 andM
with the minority rule. To go further we have to determine 4r6 ryled out because they give fixed strategies, and conse-
Pm(x), which may, however, depend on the particular modely,ently the binomial distribution is renormalized.
under consideration. Below two different cases are analyzed. 14 compute the stationary compositi®{n) one has to

One is a very simple model of noninteracting agei&A),  compute the probabilit,(n) that an agent of typa is in
which make their decision at random. The other is the verypa minority, and then plug in the result in EG). For N

recent implementation of a population of Boolean agent§arge the game is expected to be symmetric in the sense that
built up onto a Kauffman's networkAKN) introduced by \yith probability 1/2 the minority is the group of agents
Paczuskietal.[7]. , _ which takes the Xor 0) as output. In such a case a fixed

In the AKN model introduced iri7] agents makes their ,gant will, in a long time window, have a probability 1/2 of
decisions based on the previous decision of some 0thgfeing in the minority while agents changing their output very

agents. A Boolean variable; (i=12,...N; 0;=01) IS often are expected to have a lower probability to be in the
assigned to each agent which is representative of the tWFhinority.

possible dec_isions one agent ma_y_take. The decision taken by The” main hypothesis taken here is that2P,(n)
each agent is bas_ed on the quISIOH taken by dthegents =f[p(n)], wheref[ p(n)] is a smooth function of the prob-
chosen at randomi{, .. . ,ix) in the previous step, accord- pijity per unit timep(n) that an agent changes its output.
ing to certain Boolsan functiofy selected at random among gjnce fixed playersg=0) has a probability 1/2 to be in the
the set of all the 2 possible Boolean functions witk in- minority, thenf(0)=0. In the following f(p) is expanded
puts, i.e., aroundp=0, keeping only the linear term, resulting in

O',(t+1):f|[0'|l(t), ,O'lK(t)] (6) 1—2Pm(n)3<p(n)+0[p(n)2] (8)
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0.5 ' ' ' ' the network evolves to a frozen configuration wjitk 0. On
the contrary folK>2 the network evolves to periodic orbits
0.4 F - with periods growing exponentially withN (“chaotic
phase”), in which p>0.
g N Thus, the population of agents building up onto the Kauff-
0.3 | N 1 ) ) . o
= A N man’s network is a very good scenario to test the validity of
T ’ ’ N Eq. (10) because both alternatives can be observed. The
0.2 . comparison is shown in Fig. 1. F&r=2 it can be seen that
the numerical data is in better agreementRn) =Pqy(n),
0.1k | as predicted above. On the contrary, For-2 the data is in
) better agreement with the caBe>0 in Eq. (10).
For K>2 both the NIA and AKN models yield the same
0 distribution P(n) and, therefore, the correlations introduced
0 0.2 0.4 0.6 0.8 1 by the network are in those cases irrelevant. Moreover, with
n/M increasingK the composition of the population gradually ap-

i . _ roach n), which explains the | f self-organization
FIG. 1. Stationary composition of the population of agents. Thep oachesPo(n), ch explains the lost of self-organizatio

points were obtained from numerical simulations of a population Ofobserved in7]. . .
N=99 agents with a thresholt,— 100 andK =2 (square} K =3 _Finally the model of Johnsoat al. [3] is considered. In
(circles, and K=4 (triangles. In all cases the open and closed this case the decisions taken by the agents depend on the

symbols correspond to the NIA and AKN models, respectively. Thepre\/ious historylof the vyinning gr.oup. For each agent ij[ is
solid lines are obtained using EA.0) with B=0 (dashed linesand available in the mformatl(_)n of which has been the winning
B>0 (solid lineg for the corresponding values &f group oy, (t) [ow(t)=0,1] in the lastK steps. Moreover, to
each of them a stratedy is assigned, which is extracted at

Now, for NIA p(n) is just the probability to find two random among all the possible Boolean functionoin-
different outputs on the agent’s strategy, which is given byPuts. Then, for each possible past history each agent will
P.(n)=2(n/M)(1—n/M). For AKN one should also take 9ive a well defined output based on its own strategy, i.e.,
into account that agents can change their output only if at

least one of its inputs has changed output in the previous oi(t+)=f[ow(t), ... ,ow(t—K+1)]. (11)
step. Within an MF approximation the last event happens
with probability Kp. Thus, in general, Notice that in this case the output of each agent depends on
global information and not on the outputs of any other agent,
p(N)=BP.(n), (9)  asin the AKN mode[see Eq(6)].
So far this model is just a variant of the minority game of
whereB=1 andB=Kp for NIA and AKN, respectively. Challet and Zhang2] for the case in which each agent has

By construction in both model®,(n)>0 because the only one strategy at his 'disposal. In the variation by Johnson
casesn=0 andM have been ruled out. Hence—PP,(n) et al. [3] a probabilityp; is assigned to each agent based on
«BP(n) can only be zero iB=0, and if does it is zero for Whethe.r_ or not he accepts the output of its strategy._ With
all n. If the second possibility happens then all agents willProbability p; (1—p;) he uses the outcoméhe opposite
have the same probability to be in the minority and, there2utcome of its strategy. Moreover, they introduced the cu-
fore, their distribution in the stationary state will be the dis-Mulative indexz; to measure the performance of each agent
tribution from where the Boolean functions are extracted, @ Similar way as described above. The only difference is
i.e., P(n)=Py(n). Hence, Eqs(5), (8), and (9) yield the that for this model wherz; goes below the threshold; z;

following alternative: the agent does not change its Boolean funcfiohut rather
its probability p;, choosing a new one at random in the in-
) terval [ p;—R/2,p;+R/2] with reflective boundary condi-
—° _py(n) for B>0 tions.
P(n)=1 Pc(n) (10) Some analytical results are already available for this
Po(n) for B=0, model[4,6]. Using a diffusionlike approacht] or a detailed

probabilistic calculatior[6] it has been shown that in the
WhereEC=EnPc(n)P(n), which is the final output of the stationary population it has the following composition:
present calculation.
For NIA as mentioned abovB=1 and, therefore, the
alternativeB>0 takes place. The comparison of this predic-
tion with numerical data is shown in Fig. 1. The agreement is

quite well for all values oK, proving that the ansatz in Eq. whereA is a normalization constant ar},(p) is the prob-
(9) applies for this model. o ability that an agent of type is in the minority[9].

For AKN B=Kp and one should analyze whetheris Equation(12) is actually quite similar to Eq5), with the
zero or not. As is well known the Kauffman’s network dis- choicex=p. Since for this model the new values pfare
plays qualitatively different behavior depending on the valueextracted from a uniform distribution it is expected that
of K [8]. ForK=2 and independent of the initial conditions Py(p) does not depend om Hence, Eq(12) can be seen as

P(p)= (12

1-2Pn(p)’
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a limiting case of Eq.(5) when applied to the particular In summary, a heterogeneous population of competing
evolution rule of the model by Johnsaet al. [3], where agents has been studied. Based on general arguments, such
Po(x) =const. as the minority rule and evolution, the stationary composi-

In order to go beyond this result one has to determindion of the population of agents has been computed as a
Pm(p). This has already been done[i8] resulting that for ~ function of the probabilityP(x) of being in the minority.
large N, 1-2P,(p)~C(N)2p(1—p), where C(N) Further analysis reveals that the relation—2Py(x)
~N~Y2, This results does not seem to have any relation witt* Pc(X) is universal for this class of models, whe?g(x) is
the ansatz in Eq(10). However, one should notice that the probability that an agent of typegives different outputs.

. o For the AKN it is concluded that except fa¢=2 the
2p(1—p) is just the probabilityP.(p) that an agent of type X . :
p gives two different outputs, givian the output of its BOO|e‘,jmcorrelat|ons introduced by the network are irrelevant and

function has remained fixed. Therefore, from this result and9"tS ¢an be considered to be independent. In the particular
Eq. (12) it follows that ' caseK=2, which corresponds to the critical network, the

population buildup onto the Kauffman’s network reaches a
stationary state in which all agents have a probability 1/2 to
be or not in the minority. Moreover, the loss of self-

P(p)= =——— 13
(p)= P.p)’ (13 organization with increasingk was shown to take place
gradually.
This equation is just thB>0 alternative of Eq(10). Hence, | thank M. Paczuski for for useful comments and discus-

the functional dependence Bf,(x) andP(x) on P.(x) ap-  sions. | also thank Y.-C. Zhang and M. Marsili for reading
pears to be universal for the class of models studied here. the manuscript.
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